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ABSTRACT

For a variety of reasons the increase in gemerating
capacity forecast for South Africa did not materialize
resulting in capacity constraints being experienced.
Demand-side management has been instituted by the
utility in order to curtail demand growth in the peak
supply periods. Using fundamental supply and demand
theory together with certain wunique aspects
surrounding the supply of electricity, this paper
illustrates that for consumers that have the ability to
shift electrical load at short notice, the concept of
dynamic pricing is more practical. The paper
concludes by proposing a method using artificial
intelligence techniques to optimise the cost of electricity
to such a consumer.

s INTRODUCTION

It was predicted in 1972 that an additional 59 000MW(e)
of coal-burning generating capacity would have to be
installed in South Africa by the turn of the century [1].
The low economic growth of the South African economy
during the 1980s and early 1990s rendered this forecast
inaccurate and resulted in the over capacity in terms of
electricity supply seen during the early 1990s. The second
half of the 1990s saw significantly higher economic
growth [2] and this has resulted, in the absence of
electricity generating capacity increases, in the electricity
generating constraint currently being experienced in
South Africa.

The use of electricity is either in the form of an input
material in the production process or in the form of an
operating expense supporting the production process. In
the first case the electricity cost enjoys a high profile in
terms of input cost and as such gives substance to the
statement that the unit cost of electricity can be reduced
by matching demand to production potential of the
electricity, i.e. the generating capacity [3].

Demand-side management (DSM) is defined as deliberate
interventions on customer sites by the electricity supply
industry to reduce the cost of supply by changing the
shape and/or the magnitude of the load [4].
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1980s that some form of DSM strategy would have to be
followed [5].

DSM is one method by which the efficiency of the
utilization of resources can be improved [6] which will
have the effect of minimizing the cost of electricity. It is,
however, also felt that a competitive market for electricity
is necessary to provide the incentives to hold prices down
to marginal cost and thus minimize the cost of electricity
[7]. In order to encompass the economic issues
surrounding DSM, Roos & Kern [8] refer to industrial
load management (ILM), that includes DSM activities
initiated by the utility and customer. A very important
part of ILM is the financial incentive in the form of
dynamic pricing.

The remainder of the paper addresses the issues
surrounding the dynamic pricing of electricity, after
considering the standard DSM issues surrounding the
time-of-use (TOU) tariff. Conclusion is reached via a
proposal of a methodology for wusing real-time
information together with artificial intelligence techniques
to optimise the total electricity cost in an industrial
operation.

2. DYNAMIC PRICING AS A DSM TOOL

It is noted by Munasinghe [9] that price is an effective
“soft” technique of demand control. There must however
be a distinction made between the time-invariant pricing
method, and the time-dependent pricing. The time-invariant
prices are typically the standard tariffs that are normally
delineated on a TOU and seasonal basis. These tariff
structures can form the basis of bi-lateral contracts in the
real-time electricity markets so that the consumer of
electricity can control the risk of the volatility of the
dynamic electricity prices.

Kallio [10] noted that his research on the real-time pricing
of electricity in Finland yielded very promising results and
that dynamic tariffs can be used to influence the peak
consumption of electricity. In addition, the adoption of the
dynamic tariffs was easy utilizing technology available at
the time of writing. Artificial intelligence methods should
make the adoption of the dynamic tariffs and the
optimisation thereof equally as casy.

One of the consumer barriers noted by Lane [11] to DSM
revolves around the issue of energy costs being
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unimportant to the consumer. In cases where electricity is a
major input to the production process, the cost thereof is a
parameter that can be controlled if the consumer can shift
load between peak and off-peak periods together with the
supply utility being able to offer some sort of dynamic
pricing system. The dynamic pricing of electricity also
negates the aversion of consumers to DSM being
contractually binding at times when there is slack on the
electricity supply system, i.e. when the maximum demands
of the consumer and the supply utility are not coincident.

2.1 DEMAND ELASTICITY

Although it is claimed by Stoft [7] that electricity markets
are almost completely insensitive to price fluctuations, Ruff
[12] claims that there is a belief that small decreases in
demand are able to cause large decreases in the price of
electricity. The statement is qualified by Ruff [12] himself,
however, by stating that the market for electricity is still not
efficient as there is a transfer of economic rent from the
suppliers to the consumers.
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Figure 1: Market supply curve illustrating inelastic and elastic demand

In spite of the reservations that have been expressed about
the non-reactivity of demand to price, the illustration
contained in figure | shows that a certain amount of
elasticity in the demand for electricity has an effect on the
price. Assume that the supply/demand scenario depicted in
figure 1 is for a single hour in a peak time period.

At an inelastic demand of Qp (represented by the vertical
unbroken line), the equilibrium price for the electricity
supply in the single period is Pp. The indication here is that
if the consumers of the electricity are only exposed to time-
invariant price Py then the market will clear at a demand of
Qo [13]. Hirst & Kirby [13] claim that even with some of
the consumers being modestly sensitive to price, the market
will clear at a lower demand of Qgp, with a lower price of
Pep. In a case such as this it is not only the consumers that
have the price elasticity that benefit from the lower price,
but all consumers in the particular period. Ruff [12]
discusses the economic benefits of a responsive demand
such as the one described above. The reduction in the
demand in response to the price reduces the total supply-
side costs plus the demand-side costs of meeting the
consumers total demand as given by Qgp [12].

At times of generating capacity constraints figure 1
illustrates that the price of the electricity will reduce as the
demand is reduced. From the supply point of view the price
can be used to influence the level of demand thereby
increasing the load factor of the supply system as a whole.

According to Eskom [14] this has also been evident in the
standard TOU tariff (Megaflex) that has undergone a series
of structural changes in the last few years. The changes in
the energy costs in the relative TOU periods have
supported the DSM programme. The changes in the
Megaflex TOU tariff energy costs for the period starting
1991 are illustrated in figure 2 below.
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Figure 2: Megaflex TOU tariff energy costs

There are several issues to note vis-a-vis the representation
in figure 2. They are

e From 1991 to the year 2000 the changes in the tariffs
in the TOU periods and the high demand and low
demand seasons have been reasonably consistent,

e in the period 1992 — 1993 there was a decrease in the
energy cost in the peak period, both in the high
demand and low demand seasons. This was
accompanied by a relative increase in the energy cost
in the standard TOU period, and

e the year 2001 saw the first of the disparate increases ir
the price of energy in the peak TOU period in the high
demand season signifying the start of the structural
changes to the tariff.

The illustration in figure 2 also confirms the statement b:
Campbell [15] that the peaking stations are more expensive
to run than the base load stations and that the average pricc
of electricity will be increased by the greater amount o
peaking capacity required. The price increase in the peak
period has, in the opinion of Eskom [14], resulted in the
shifting of a certain proportion of demand in the high
demand season. The conclusion that can be reached is tha:
demand can be influenced by the price that the consumer-
are exposed to.

The importance of this issue is evident in the strategy that ¢
consumer follows when hedging a fixed consumption o
electricity using the standard TOU tariff. The claim by
Stoft [7] that the electricity market is almost completel
insensitive to price fluctuations is qualified by himse!:
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stating that wholesale price fluctuations are not usually
passed on to retail customers.

Eskom has fixed targets in terms of DSM that have to be
reached over a 25 year period. In the year 2003, a total load
saving achieved amounted to only 43% of the target with
99% of the saving as a result of a demand market
participation (DMP) project [14]. This performance
indicates that the dynamic pricing of electricity, which is
essentially DMP based, deserves active pursuance as a
complimentary option to DSM.

2.2 MARKET PRICE DETERMINATION

In order to illustrate the influence of the level of demand as
forecast by an electricity system operator on the electricity
price, consider figure 3 below. The assumptions inherent in
this analysis are that

e the market is competitive and that no single generator
can influence the market, i.e. does not have market
power, and

e that the market clearing price provides the economic
incentive for a generator to produce as scheduled, i.e.
that the generator has given genuine marginal costs.
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Figure 3: Generation bid stack with superimposed aggregated demand

The method by which the price is determined is as follows.

e The hourly load on the system is forecast, or it may be
determined by demand bids [16],

e the generation bids are aggregated by a system
operator to give the system supply curve as is shown in
figure 1 above,

e the point at which the hourly load, defining the
demand, intersects with the supply curve defines the
market clearing price (MCP) which is then the price of
the electricity in that hour, and

o after the MCP is set additional markets open to handle
system constraints such as transmission limitations and
system integrity issues [16].

3. DYNAMIC ELECTRICITY PRICING

Dynamic electricity prices are distinguished from the
classical TOU tariffs by the potential they exhibit of many
more price levels and a greater variability in the prices
applicable to different hours of the day [3]. Dynamic tariffs
can take on a number of forms with the interruptible tariff
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being the simplest [15]. The other principal forms of
dynamic tariff are the day-ahead pricing and real-time
pricing.

The distinction between day-ahead prices and real-time
prices is sometimes very fuzzy with the terms being used
interchangeably. For the purpose of this discussion the day-
ahead prices are the prices fixed at least 18 hours in
advance and they are the prices that are normally forecast
and used in the planning process. The real-time price is the
one that is determined at very short notice that caters for
the immediate and unforeseen occurrences in the system
that require the system to be rebalanced, i.e. the ancillary
market.

The different markets are defined by Shahidehpour, Yamin
& Li[17] as

e the day-ahead forward market is a forward market that
is used for scheduling resources at each hour of the
following day. Both energy and ancillary services can
be traded in the forward market, and

the real-time market is used to ensure the reliability of
the power system by balancing it in real-time.

3.1 PRICE VOLATILITY

Although Stoft [7] notes that deregulation is not equivalent
to perfect competition, deregulation is a prerequisite for the
institution of a competitive market. The relative difficulty
of storing electricity to match supply and demand in the
deregulated supply system makes it prone to very large
fluctuations in the spot price [18] where a competitive
market for electricity is operating. A feature of a
competitive market is the variability of the price and the
unique aspects of the supply of electricity cause the price to
very often be even more volatile than the price of any other
commodity [13]. The volatility is, however, not regarded as
random and it is thus possible to identify certain patterns
and rules pertaining to the market volatility [16]. The
significance of being able to identify patterns and being
able to apply rules to the aspect of the price volatility will
become evident in the next section.

In his discussion on the barriers that consumers have to
price responsive demand, Hirst [19] claims that most
consumers do not want to face volatile prices because the
volatile prices are equated with higher bills. There is not
the realisation on the part of consumers that the high prices
in a few hours of the year are more than offset by low
prices during the rest of the year [19]. Hirst & Kirby [13]
note that the statistics for the hourly prices are skewed
towards the lower prices.

The demand response, as shown in figure 1, will also have
the effect of reducing the volatility of the prices [13]. This
should render the predictability of the forecast prices more
accurate in the longer run.

A detailed discussion of the mathematics of volatility and
the different measures thereof would not add a tremendous
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Figure 4: Flowchart illustrating forecasting procedure

amount of value to this paper. It is, however, clear that the
issue of volatility is pervasive in the study of the the real-
time aspects of the pricing of electricity. For additional
detail on the subject of volatility, the reader is referred to
the texts by Eydeland & Wolyneic [16], Shahidehpour, et
al. [17], Hull [18] and Krapels [20].

4. ARTIFICIAL INTELLIGENCE METHODS

The issues that have been discussed so far are principally
applicable to the supply-side of the equation. The price
volatility is probably the aspect of dynamic pricing that has
the most influence on the demand-side. It is the volatility
that makes the application of the dynamic pricing to DSM
activities worthwhile. In the discussion on the long-run
effects of real-time electricity pricing, Borenstein [21]
notes there are societal gains to be achieved by real-time
pricing of electricity and the benefits can be substantial
even with small demand elasticities. The immediate benefit
to consumers that have the ability to swing load at short
notice is in the form of lower electricity costs.

The important aspects from the point of view of a
consumer are firstly, the load and price management with
respect to the forecasting of each, and secondly the real-
time decision making. The load and price management
activities revolve around the forecasting of these
parameters for a set period into the future. The real- time
decision-making will be very largely influenced by the
accuracy of the price forecast together with the conditions
prevailing in the real-time market.

41 LOAD AND PRICE MANAGEMENT

Figure 4 illustrates the procedure whereby the electricity
consumption of a large consumer is matched to the forecast

conditions of price in the electricity market in order to
minimize the cost of electricity in the production process.

As with almost all business processes the starting point is a
strategic planning one. The consumption of electricity is
determined by the marketing requirements of the primary
product. The requirement of electrical units defines the
basis upon which the hourly electrical load of the plant is
defined. Operational issues such as planned maintenance,
upstream and downstream constraints; etc will also
influence the schedule of hourly electrical load.

The second activity here is the forecasting of the day-ahead
electricity prices so that the price forecast for a particular
hour in the planning horizon can be matched to the load for
that hour that has been calculated previously. The cost of
electricity based on a forecast of the day-ahead prices of the
electricity is thus defined. The amount of electricity that the
consumer purchases is then divided into an allocation to a
bi-lateral contract whereby a certain amount of price risk is
hedged, with the remainder being allocated by the
consumer to the day-ahead and real-time markets. A
consumer may also hedge a certain amount of risk by
purchasing forward contracts for the future supply of
electricity [22] as a complimentary aspect of the bi-lateral
contract. If operational conditions dictate as such and the
owner of the forward contract for the supply of the
electricity is not in a position to utilize the electricity, the
contract may then be traded in the market.

The mechanics of forecasting the day-ahead price is where
the artificial intelligence (AI) methods are of importance.
The forecasting of the price of electricity is an issue that
has only gained prominence with the restructuring of the
electricity industry [17]. From the point of view of the
consumer, the forecasting of the load tends to be very
mechanistic based on some ancillary strategic planning
issue. The forecasting of price is of a higher priority as it
may, in many cases, have a significant influence on a final
product cost structure. Shahidehpour, et al. [17] note that
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there are various methods proposed but they vary from the
extremely complex to implement to the questionable
accuracy of the simple methods. The conclusion of
Shahidehpour, et al. [17] is that the artificial neural
network (ANN) provides the most simple and powerful
tool for practical forecasting. The accuracy of the forecasts
may be an issue due to the limited number of physical
factors that are considered in the forecasting of the price.
Two of the difficulties noted by Shahidehpour, et al. [17]
are the subjective nature of the bidding strategies of market
participants, and the influence of price spikes, which arc a
distinctive aspect of the electricity market. The procedure
illustrated in figure 4 makes provision for comparing the
volatility of the forecast prices to the actual historical prices
and repeating the forecast if necessary. The historical and
forecast prices may also be delineated into TOU periods,
which would render the volatility in each period more
comparable, and the forecasting by ANN more robust.

Eydeland & Wolyniec [16] make reference to the statistical
concept of “mean reversion” being applicable to the
electricity prices. With this being the case, the historical
prices can conceivably be used to forecast future electricity
prices by capturing a pattern of the historical prices within
a TOU period.

42 REAL-TIME MONITORING OF THE COST
The final area where artificial intelligence methods have a
significant role to play in the real-time aspects of electricity
sourcing is in the monitoring of the prevailing real-time
issues. The importance of this results from the existence of
the real-time (ancillary) electricity market where the

balancing of the supply-demand relationship within the
electricity market occurs.

It is noted by Hirst [23] that day-ahead prices might be
higher than the real-time prices as a result of certain
consumers being willing to pay higher prices to protect
themselves from the higher volatility of the real-time
markets. Although the prices in the markets may differ,
Hirst [23] proceeds to note that the differences between the
day-ahead and real-time prices will be arbitraged by risk-
neutral market participants. For a consumer that is a market
follower, this is of academic interest and not important in
terms of electricity cost minimization. The artificial
intelligence technology that is available to a consumer that
participates in the day-ahead and real-time markets in order
to maximize the retumn on participation in the markets is a
knowledge-based expert system.

The issues surrounding the implementation of a robust
knowledge-based expert system are well documented and
will not be addressed here. There are, however, certain
aspects that need detailed attention for such a system to be
self sustaining and useful. The first requirement is that the
knowledge that the system operates on has a very high
integrity. This knowledge is generated from the electrical
consumption data of the load together with the day-ahead
and real-time prices from the utility. Borenstein, Jaske &
Rosenfeld [24] refer to advanced metering and data
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communication systems being. required. Hardware
configurations to meet these metering and data collection
requirements are common today.

The second, and complimentary, requirement is that a
rational set of rules be formulated to enable robust
decisions based on historical performance to be made. With
a target electricity cost based on the forecasting described
previously, the expert system must be developed in such a
way that future consumer loads can be adjusted based on
the performance in the period to date. The application of
this procedure may in fact result in the adjustment of the
forecast load profile.

5. CONCLUSION

By giving consideration to the supply aspects of electricity
in the deregulated competitive environment it was shown
that demand is elastic. Although the pricing signals in the
standard TOU tariffs are very sluggish, it is evident that the
demand for electricity does react to the price. In order to
restrict the growth of demand, particularly in peak periods,
the electricity supply utility has introduced a program of
DSM.

In an attempt to counter the rigidity of the application of
DSM, the reaction of certain classes of consumer to pricing
signals can be used to apply a dynamic form of DSM
referred to as DMP. A prerequisite for the effective
application of the DMP mode of demand curtailment is the
ability of a consumer to shift load in response to pricing
signals. This paper proposes AI methods to assist in the
control of such an operation.
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